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ABSTRACT 

This paper presents a method of evaluation of frequency dependent optical scattering rate r(ω) 

and the effective mass 
bm
*m (ω) of heavy electron compound CeAl3. Two plasmon frequency ωp 

(unrenormalised) and ω*p (renormalized) for some of the heavy compounds are also evaluated. Our 
theoretical results are in good agreement with the experimental data and other theoretical workers. 
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INTRODUCTION 

Highly correlated states of condensed matter have opened new chapters in physics. 
Examples of particular interest include the so–called Kondo or heavy electron materials, 
which were discovered in the late seventies. The class of strongly correlated systems also 
include the transition metal oxides, including d–electron (Mott Hubbard) systems as well as 
the high temperature superconducting cuprates, quasi–one–dimensional materials, such as 
organic Bechgaard salts, and possibly the carbon fullerenes. 

Heavy electron systems are electrically conducting materials with peculiar low 
temperature physical properties that distinguish them from ordinary metals1–4. In fact, the 
conduction–electron specific heat is typically some 100 times larger than that found in most 
metals. Similarly, the magnetic susceptibility can be two or more orders of magnetic 
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susceptibility can be two or more orders of magnitude larger than temperature independent 
Pauli susceptibility observed in conventional conducting materials. 

The prototype heavy electron materials include actinide and rare earth alloys, mostly 
containing U and Ce, respectively, like CeAl3, CeCu6, UBe13 and UPt3. At high temperature, 
these systems behave as a weakly interacting collective of ƒ-electron moments and 
conduction electrons with quite ordinary masses; at low temperatures, the ƒ-electron 
moments become strongly coupled to the conduction electrons and to one another, and the 
conduction electron effective mass is typically 10 to 100 times the base electron mass. This 
obviously leads to an enhanced Sommerfeld coefficient γ of the linear T term associated 
with the electronic contribution to the specific heat. Alternatively, such an enhancement of 
the values indicates a large electronic density of states at the Fermi level EF. 

Heavy electron materials constitute a formidable challenge to condensed matter 
physicists not only with respect to their normal properties but also to their superconducting 
and magnetic properties, which are not yet fully understood. Particularly, the coexistence of 
heavy electron behavior with magnetic ordering or superconductivity (or both) has attracted 
a lot of interest. In fact, although magnetic ordering and heavy electron behavior (possibly 
together with superconductivity) seem, at first sight, to be mutually exclusive, various 
experimental observations indicate that this is not necessarily so. Both magnetic ordering out 
of a heavy electron state and the formation of a heavy electron state in a magnetically 
ordered matrix seem possible. Examples of these two distinctly different situations are 
realized in the low temperature properties of U2Zn17 and UCu5, which order 
antiferromagnetically at 9.7 and 15 K, respectively. Also of interest are those heavy electron 
materials showing the coexistence of superconductivity with magnetic ordering5. In this 
respect, URu2Si2 attracted a lot of attention as the first heavy electron metal with 
superconductivity (Tc = 1K), developing in an antiferromagnetically ordered matrix (TN = 
17.5 K). A systematic search6,7 led to the discovery of the co-existence of anti- 
ferromagnetism and superconductivity in UNi2Al3 (TN = 4.6 K, and Tc = 1 K) and UPd2Al3 
(TN = 14 K and Tc = 2 K), as well. On the other hand, superconductivity also manifests itself 
in some of the more ‘conventional’ heavy electron materials, e.g. CeCu2Si2, UPt3 and UBe13. 

In this paper, we have presented the method of evaluation of frequency dependence 
optical scattering rate and effective mass of heavy electron compound CeAl3 at different 
temperatures. We have used theoretical formalism developed by Millis and Lee8 and 
Kramers-Kronig analysis of optical conductivity σ(ω) in our evaluation. Our theoretical 
results are in good agreement with that of the other theoretical workers and experimental 
data. 
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Mathematical formulae used in the evaluation 

One uses Millies and Lee8 model, which describes a band of nearly free electrons 
hybridizing with a very highly correlated band of ƒ electrons. In the absence of this 
hybridization, the ƒ electrons are confined to a site in localized orbitals far below the Fermi 
energy. This model contains the essential physics of heavy electron metals, a non–magnetic 
ground state that behaves as a Fermi liquid with large effective mass. In the U limit, where U 
is the coulomb repulsion between ƒ electrons on the same site, the Hamiltonian may be 
written as - 

 
…(1)

 
This Hamiltonian describes a band of conduction electron (c electron) with operator  

Ckσ and energy εkσ, which hybridizes with a set of localized ƒ electrons with operator ƒim and 
energy Eom via an interaction V, taken to be constant. The solution is subject to the 
constraint that each site may be occupied by at most one ƒ electron (this U= ∞ limit). 

                                               
f f nim

im
im f

i*∑ = ≤ 1 …(2) 

Since the above constraint does not commute with HA, a slave boson technique is 
used to handle the Hamiltonian (1). Here, there are two possible sources of scattering of 
electrons. One is the scattering of electron off the impurity; the other is the scattering from 
the boson fluctuations. The latter turns out to be in some ways analogous to electron phonon 
scattering and compounds to the fluctuations of the slave bosons with respect to their saddle 
point value of 1/N effect. Here also, one assumes the validity of Matthiessen's rule9 where 
the scattering due to different mechanism is added. If in the presence of impurities only, 
conductivity is σi and in the presence of bosons only the conductivity is σb; then the total 
conductivity is given by 

                                                σ σ σ− − −= +1 1 1
i b

 …(3) 

Matthiessen's rule is believed to be valid where the various scattering mechanism are 
not momentum dependent. 

At sufficiently low temperature, only impurity scattering is relevant. To compute σi 
(ω, T) of σ (ω, T) disorder must be coupled in the system. If the disorder is weak and on the 
conduction electron site only; then the corresponding Hamiltonian - 
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 V1 is the impurity scattering amplitude. One also introduces an energy parameter ε f 
which is analogous to the Debye frequency in the electron- phonon interaction problem. It 
sets the scale for the energy of the boson propagator. Now the large effective mass* is given 

                                                                                      
 …(5) 

Where W is the bare bandwidth and N is the orbital density of the ƒ-state. 

For fW ε≤  the impurity scattering is isotropic σi (ω) reduces to10, 11 -  
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both for conduction and ƒ electrons. mb is the conduction band mass. 

Two characteristic plasma frequency are expected  

(i)  One at high frequency 
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This identifies the uncorrelated conduction electrons. 
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(ii)  Second at low frequency associated with the heavy plasmons. 

                                                …8(b) 

Where T* is the renormalized Fermi temperature usually identified with Kondo 
temperature Tk. Here n = nc + nƒ is the total carrier density. nc is the conduction electron 
density and nƒ is the ƒ electron density. The heavy electron plasma mode reflects not only 
the heavy quasi-particle mass (m*/mb) but also the renormalized plasma frequency (or 
unscreened heavy plasmon). 
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Which appears in equation (8a) and corresponds to the spectral weight with narrow 
Drude like mode12. The optical conductivity can generally be approximated by a sum of 
Lorentz harmonic oscillator and of Drude term. The former contributions arise each time an 
absorption of finite frequency takes place and they are usually ascribed to vibrational 
infrared active modes (phonons) or/ and to electronic interband transition. The Drude term 
applies for metals and describes the free charge carrier’s contribution to the electrodynamics 
response. The general formulae for the complex dielectric function is 

∑
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where ωp and 
1
τ

Γ →  in the Drude term are the plasma frequency and the damping 

(scattering relaxation) of the free charge carriers while ωj, Γj and ωpl are the resonant 
frequency, the damping and the mode strength of the harmonic oscillators respectively13. 
The high frequency absorption above the ultraviolet spectral range are taken into account by 
ε∞. This phenomenological fit is a useful approval in order to decouple the various 
components determining the excitation spectrum and to evaluate the several parameters like 
the plasma frequency and the scattering relaxation rate.  

Sum rule arguments lead to the following integral14 
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Using equation (10), one determines the unscreened optical plasma ħωp
~ 3.5 eV for 

CeAl3. ωħ is the high frequency -3000 cm-1. For T << Tco (low temperature) after the high 
frequency interband transition removed 

∫ ==<<= ∞
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ωc is the cut off frequency, ωp
* is the renormalized plasma frequency,  
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Where Σc is the band electron self energy A states for advanced and R for retarded. 
ωp is the Drude plasma frequency and f(ε) is the Fermi function. 

Now one compares the results of the plasma frequency at 300 K with ω* at 
temperature lower than Tco 
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Since the total change carrier concentration does not change below Tc, one can 
estimate  enhancement of the effective mass m*. 

Now frequency dependent scattering rate Г (ω) and m*/mb (ω) are determined 
through Kramers–Kronig relation between σ1 and σ2 where σ3 is the real part of σ(ω) and σ2 
is the imaginary part of σ(ω). The complex conductivity may be written15 - 
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Where ωp is the unscreened optical plasma frequency. Now the relationship between 
σ1, σ2, and Г together with (m*/mb) are obtained as 
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Where ω < Г and ω→0, σ1 is constant and σ2→0 while both Г(ω) and 
m
mb

* ( )ω  

mabove frequency independent values. 

RESULTS AND DISCUSSION  

In this paper, we have presented the method of evaluation of frequency dependent 

optical scattering rate Г(ω) and the effective mass 
m
mb

* ( )ω  of heavy electron compound 

CeAl3. The result is shown in Tables 2 and 3 with experimental data. We have used equation 
(16) and (17) for these evaluations. The value of σ1 and σ2 are obtained from the Kramers–
Kronig analysis of the data15, where optical conductivity σ(ω) = σ1(ω)  + iσ2(ω). In Table 1, 
we have shown the evaluated results of unscreened optical plasma frequency ωp, 
renormalized plasma frequency ωp

* using relation (8a) and (8b) taking the value of effective 
mass (m*/mb) and (m*/me) for different heavy electron compounds. Our theoretical results 

for 
m
mb

* ( )ω for different T indicates that at lower temperature m* assume to be constant 

value of frequencies below which it becomes frequency independent. This crossover 
frequency [say ωco (T)] is approximately 0.3, 0.9 and 0.7 cu–1 at 1.2, 3.0 and 5 K, 
respectively. The values of m*/mb for CeAl3 at ωco's are 418, 376 and 218 m, which we 
believe to be the zero frequency effective mass. A substantial increase with effective mass 
occurs only below 3 K and at 10 K and above, the coherent states does not exist, therefore 
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no mass enhancement is reported in the surface independence results16-18. In Table 3, we 
have shown the renormalized frequency dependent optical scattering rate ħГ(ω) (eV). We 
have compared the result obtained from the surface independent measurement19. Above 10 
K, the frequency dependence of Г disappears but at low temperature, the scattering rate is 
only temperature dependent. We have also calculated renormalized scattering rate Г* = Г 
(m*/mb). For CeAl3, Г* in its dc limit i.e. Г* (ω→0) has values 0.7, 2.5 and 4.5 cu–1 at 1.2, 3 
and 5 K, respectively20-22. 

Table 1: Evaluated results of plasma frequency ωp and ωp
* and effective masses 

(m*/mb) and (m*/me) of some heavy electron systems 

System ωp ωp* (m*/mb) (m*/me) 

CeAl3 
UPt3 

CeCu6 
CePd3 

3.5 
2.6 
2.3 

1.84 

0.155 
0.326 
0.35 
0.15 

510 
65 
40 

150 

809 
248 
36 

602 

Table 2: Evaluated results of frequency dependent effective mass m* of heavy electron 
compound CeAl3 at different temperatures, comparison is made with expt. 
Date 16 

m
mb

* ( )ω
 

T = 1.2 K T = 3.0 K T = 5 K T = 10 K 
Frequency 

(cm-1) 

Theory Expt. Theory Expt. Theory Expt. Theory Expt. 

10 
20 
50 
60 
70 
80 
90 
100 
120 
150 

412 
406 
396 
372 
351 
332 
267 
212 
196 
140 

 
 
 
 

298 
256 
212 

356 
329 
305 
286 
247 
218 
198 
174 
152 
130 

 
 
 
 

230 
222 
210 

212 
203 
183 
165 
154 
135 
107 
87 
76 
42 

 
 
 
 

142 
130 
121 

112 
84 
73 
43 
36 
27 
18 
11 
9 
4 

 
 
 
 

50 
29 
22 
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Table 3: Evaluated results of frequency dependent renormalized optical scattering rate 
ħГ(ω) for CeAl3 at different temperatures 

Optical scattering rate ħГ (w) 

T = 1.2 K T = 3 K T = 5 K T = 10 K Frequency
(cm-1) 

Theory Expt. Theory Expt. Theory Expt. Theory Expt.

10 
20 
50 
60 
80 
90 
100 
110 
120 
140 
150 

0.025 
0.028 
0.361 
0.039 
0.052 
0.065 
0.078 
0.096 
0.125 
0.138 
0.142 

 
 

0.030 
0.035 
0.042 
0.056 
0.066 

0.068 
0.076 
0.085 
0.097 
0.106 
0.118 
0.125 
0.135 
0.142 
0.156 
0.167 

 
 

0.060 
0.082 
0.098 
0.105 
0.016 

0.105 
0.116 
0.122 
0.135 
0.138 
0.142 
0.148 
0.156 
0.167 
0.172 
0.184 

 
 

0.102 
0.125 
0.134 
0.139 
0.145 

0.122 
0.136 
0.146 
0.153 
0.166 
0.175 
0.186 
0.195 
0.205 
0.226 
0.245 

 
 

0.135 
0.140 
0.146 
0.158 
0.167 
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